414 research outputs found

    Two-Dimensional Molecular Patterning by Surface-Enhanced Zn-Porphyrin Coordination

    Get PDF
    In this contribution, we show how zinc-5,10,15,20-meso-tetradodecylporphyrins (Zn-TDPs) self-assemble into stable organized arrays on the surface of graphite, thus positioning their metal center at regular distances from each other, creating a molecular pattern, while retaining the possibility to coordinate additional ligands. We also demonstrate that Zn-TDPs coordinated to 3-nitropyridine display a higher tendency to be adsorbed at the surface of highly oriented pyrolytic graphite (HOPG) than noncoordinated ones. In order to investigate the two-dimensional (2D) self-assembly of coordinated Zn-TDPs, solutions with different relative concentrations of 3-nitropyridine and Zn-TDP were prepared and deposited on the surface of HOPG. STM measurements at the liquid-solid interface reveal that the ratio of coordinated Zn-TDPs over noncoordinated Zn-TDPs is higher at the n-tetradecane/HOPG interface than in n-tetradecane solution. This enhanced binding of the axial ligand at the liquid/solid interface is likely related to the fact that physisorbed Zn-TDPs are better binding sites for nitropyridines.

    30S Beam Development and X-ray Bursts

    Full text link
    Over the past three years, we have worked on developing a well-characterized 30S radioactive beam to be used in a future experiment aiming to directly measure the 30S(alpha,p) stellar reaction rate within the Gamow window of Type I X-ray bursts. The importance of the 30S(alpha,p) reaction to X-ray bursts is discussed. Given the astrophysical motivation, the successful results of and challenges involved in the production of a low-energy 30S beam are detailed. Finally, an overview of our future plans regarding this on-going project are presented.Comment: 7 pages, 2 figures, 5th European Summer School on Experimental Nuclear Astrophysics, Santa Tecla, Sicily, September 200

    DEVELOPMENT OF "Luftain -Tg" AS A MICROISOLATION CAGE SYSTEM

    Get PDF
    Developed "Luftain Tg" to include cage and luck for the breeding, nowadays an experiment increases as exchanging it digest gene set, and breeding, experiment of Transgenic mouse (following Tg mouse) increases. Doesn't exit the front of luck to outside as giving and doing a mind directly to cage inside, as a ceremony as hanging bathtub type cage-we controlled with a curtain and developed a system to defend from an expansion of cage inside and outside contamination. Again, for flowing of these air computer simulation even though were able to confirm it.Tgマウスの飼育に適し、かつ、飼育作業性の良いラックの開発を行った。バスタブ型ケージを吊り式とし、天井/吊りレール/背面側塞ぎ板により上方3方を閉鎖しケージからの排気出口は上前面のケージ鍔上のみとした。ケージ-の上後方からの直接給気とケージからの排気の流れは架台前面をエアカーテンで制御し、架台後方より排気することによりケージ内外の汚染の伝播を防止する機構になっており、コンピューター・シミュレーション及び気流可視化試験によりその効果が確認できた

    The PALM Technique: histological findings of masked phototherapeutic keratectomy on rabbit corneas

    Get PDF
    BACKGROUND: To compare the corneal healing response between conventional and phototherapeutic keratectomy through a masking agent, in rabbit corneas. METHODS: 24 adult rabbits underwent phototherapeutic keratectomy. Animals were divided in two groups: 12 received photoablation through a masking agent (PALM gel) and the remaining 12 received conventional phototherapeutic keratectomy of equal depth and served as control. Light and transmission electron microscopy was performed in specimens of both groups obtained: immediately after, four hours, one week, one, three and six months after treatment. RESULTS: Reepitheliazation was complete within five days in all eyes. Light and transmission electron microscopy did not reveal any differences of the healing process in the experimental eyes compared to the controls. CONCLUSION: Photoablation through the PALM technique did not result any evident alterations of the reepithelisation and stromal healing process

    IL-6 is constitutively expressed during lung morphogenesis and enhances fetal lung explant branching

    Get PDF
    Previous studies have shown that chorioamnionitis, with increased IL-6, promotes fetal lung maturation and decreases the incidence of respiratory distress syndrome in premature neonates. However, the expression pattern and the effects of IL-6 on fetal lung growth mechanisms remain unknown. IL-6 expression was assessed by in situ hybridization and by real-time PCR between 14.5 and 21.5 d postconception. Normal and nitrofen-induced hypoplastic lung explants were cultured with increasing IL-6 doses or IL-6 neutralizing antibodies. Branching, cellular proliferation (Ki-67) and MAPK phosphorylation in fetal lung explants were analyzed. Pulmonary primitive epithelium expressed IL-6 constitutively throughout all gestational ages, displaying highest levels during earliest stages. In normal and hypoplastic lung explants, IL-6 neutralizing antibodies significantly reduced, whereas IL-6 supplementation induced a biphasic effect (lower doses increased, while the highest dose did not accomplish additional effect) on branching and cellular proliferation. IL-6 enhanced p38-MAPK phosphorylation without changing MEK1/2 and JNK pathways. The present study suggests a physiological role for IL-6 on pulmonary branching mechanisms most likely involving p38-MAPK intracellular signalling pathway

    Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?

    Get PDF
    Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing

    Tramtrack Is Genetically Upstream of Genes Controlling Tracheal Tube Size in Drosophila

    Get PDF
    The Drosophila transcription factor Tramtrack (Ttk) is involved in a wide range of developmental decisions, ranging from early embryonic patterning to differentiation processes in organogenesis. Given the wide spectrum of functions and pleiotropic effects that hinder a comprehensive characterisation, many of the tissue specific functions of this transcription factor are only poorly understood. We recently discovered multiple roles of Ttk in the development of the tracheal system on the morphogenetic level. Here, we sought to identify some of the underlying genetic components that are responsible for the tracheal phenotypes of Ttk mutants. We therefore profiled gene expression changes after Ttk loss- and gain-of-function in whole embryos and cell populations enriched for tracheal cells. The analysis of the transcriptomes revealed widespread changes in gene expression. Interestingly, one of the most prominent gene classes that showed significant opposing responses to loss- and gain-of-function was annotated with functions in chitin metabolism, along with additional genes that are linked to cellular responses, which are impaired in ttk mutants. The expression changes of these genes were validated by quantitative real-time PCR and further functional analysis of these candidate genes and other genes also expected to control tracheal tube size revealed at least a partial explanation of Ttk's role in tube size regulation. The computational analysis of our tissue-specific gene expression data highlighted the sensitivity of the approach and revealed an interesting set of novel putatively tracheal genes

    Brevianes Revisited

    Get PDF
    Breviones are a new family of secondary metabolites that were originally isolated from the New Zealand endemic fungus Penicillium brevicompactum var. Dierckx. These compounds are generally characterized by a new carbon skeleton, known as breviane, which that has three possible structural variations, such as breviane, abeo-breviane, and abeo-norbreviane. Brevianes present a basic diterpenic tricyclic core that is mevalonic in origin and is similar to that of perhydrophenanthrene. The core bears four methyl groups at positions C4, C8, C10, and C13 and has defined stereochemistry at positions C5, C8, C9, C10, and C14. The C1'-C7' side chain has been proposed to have a polyketide biosynthetic origin and is joined to the diterpenic moiety through carbons C2'-C15'. The cyclization and lactonization of this part of the molecule leads to the characteristic breviane spiranic ring fused to the α-pyrone

    High-Throughput Screening of Australian Marine Organism Extracts for Bioactive Molecules Affecting the Cellular Storage of Neutral Lipids

    Get PDF
    Mammalian cells store excess fatty acids as neutral lipids in specialised organelles called lipid droplets (LDs). Using a simple cell-based assay and open-source software we established a high throughput screen for LD formation in A431 cells in order to identify small bioactive molecules affecting lipid storage. Screening an n-butanol extract library from Australian marine organisms we identified 114 extracts that produced either an increase or a decrease in LD formation in fatty acid-treated A431 cells with varying degrees of cytotoxicity. We selected for further analysis a non-cytotoxic extract derived from the genus Spongia (Heterofibria). Solvent partitioning, HPLC fractionation and spectroscopic analysis (NMR, MS) identified a family of related molecules within this extract with unique structural features, a subset of which reduced LD formation. We selected one of these molecules, heterofibrin A1, for more detailed cellular analysis. Inhibition of LD biogenesis by heterofibrin A1 was observed in both A431 cells and AML12 hepatocytes. The activity of heterofibrin A1 was dose dependent with 20 µM inhibiting LD formation and triglyceride accumulation by ∼50% in the presence of 50 µM oleic acid. Using a fluorescent fatty acid analogue we found that heterofibrin A1 significantly reduces the intracellular accumulation of fatty acids and results in the formation of distinct fatty acid metabolites in both cultured cells and in embryos of the zebrafish Danio rerio. In summary we have shown using readily accessible software and a relatively simple assay system that we can identify and isolate bioactive molecules from marine extracts, which affect the formation of LDs and the metabolism of fatty acids both in vitro and in vivo
    corecore